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Branching model for the fracture of fibre composites

V. KRIVOBODROV
Research Centre “Composite”, P.O. Box 28, St. Petersburg, 194017, Russia

Models of localized and delocalized fracture of fibre reinforced composite materials have
been considered from the viewpoint of the theory of branching processes. The analysis has
shown that, in spite of apparent differences, both types of models can be reduced to
generally the same Markov chain. As a result, a new fracture criterion has been proposed
that is valid for any model. The use of the new criterion allowed for the revelation of a new
structural effect, i.e. the dependence of the fracture stress of the composite upon the size of
the cross-section of the composite sample. In the case of a fracture of an infinitely large
composite sample, the criterion yields the same fracture stress as calculated on the basis of
earlier models. In the case of the fracture of a sample of a finite size, the predicted fracture
stress is lower than calculated according to previous models. The effect can be explained as
a non-linear fracture phenomenon arising out of the non-linear dependence of microfracture
probabilities upon overstressing caused by other microfractures. The effect is essential for

evaluating the strength of a structured compaosite with several levels of ordering and
constriction elements of a small size. © 7998 Chapman & Hall

1. Introduction

In general, publications devoted to the mechanical
properties of composite materials consisting of a duc-
tile matrix reinforced with continuous high-strength
high-stiffness fibres focus on two types of fracture
models. Models of one type can be called models of
delocalized fracture, whereas models of the other type
can be characterized as ones of localized fracture.
A complete theory of a composite fracture should take
into account both fibre fractures and non-fibre effects,
such as matrix plastic flow, debonding, residual stres-
ses, disordering of a regular structure, etc. These ef-
fects have different contributions to a fracture pattern
and in many cases can be accounted for by super-
imposing models developed for each particular
fracture mechanism. The present paper considers sta-
tistical aspects of composite fracture conditioned by
fibre breaks.

The model of delocalized fracture was first
introduced by Rosen [1]. This model is based on
the mechanism of the failure of a bundle of fibres
having a statistical distribution of flaws or imperfec-
tions and has been thoroughly considered by Daniels
[2]. According to the suggested approach, a fibre
is considered as a chain composed of links of length
d, which is the ineffective length of a fibre in the
matrix. The links have a satistical distribution of
strength due to imperfections. It is also supported that
each link can be broken only once when tension is
applied.

A composite as a whole can then be considered as
composed of a series of identical layers of dimension d.
Each layer in this case represents itself as a bundle of
fibre links and the composite is treated as a series of
such bundles. Any fibre that fractures within the layers

0022-2461 © 1998 Chapman & Hall

1s supposed to be unable to transmit a load across the
layer and the applied load is treated as uniformly
distributed among the unbroken fibres in each layer.
(For simplicity, it is assumed that only fibres can carry
the tension, whereas the matrix transmits the shear
stress.)

From the assumptions of the model, it follows that
with an increase of the applied load fibres fracture in
random places within the material and composite
failure occurs due to the statistical accumulation of
flaws (fibre breaks) in a layer.

The concept of localized fracture was first con-
sidered by Zweben [3]. For the description of a
composite structure, basically the same model assum-
ptions were used. The composite was considered to
consist of a series of identical layers of elements whose
axial dimensions were some ineflective length d. Any
fibre that broke in a layer was considered to have zero
stress within that layer, but to be fully stressed in all
other layers. However, in contrast to Rosen, the model
assumed that elements adjacent to a broken one were
subjected to a load intensity greater than that which
was sustained by fibres distant from the fracture site.
Therefore, each fracture site could be thought of as
a nucleus for the propagation of fibre fracture, and in
this case fibre breaks have to have a tendency of
localization. The localization means that with the in-
crease of the applied load new fibre breaks occur
predominantly in the vicinity of already existing fibre
breaks. The composite fracture in this model is asso-
ciated with the growth of a flaw due to successive
breaks of neighbouring fibres.

Since their first publication both models have
been studied many times in regard to theor-
etical elaboration as well as in comparison with
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experimental data. The most complicated case was
considered in [4], where different types of load-
sharing rules were investigated. Also, the case where
fibres located at different distances from a fracture
site experience different degrees of overstressing has
been analysed. It was shown that the fibres under
maximal overstressing play a key role in fracture
development.

The delocalized and localized fracture models use
different criteria for a composite fracture {(macrofrac-
ture). The purpose of the present study is to introduce
a common fracture criterion applicable both to de-
localized and localized fracture models. The use of
a common criterion will allow us to understand better
the nature of discrepancies between the models (if any)
and to determine in different cases which model is
more appropriate and also to reveal a new structural
effect that has not been described by earlier models.

The criterion to be used comes from the theory of
branching processes and is different from criteria used
earlier. In order to introduce a new criterion, we will
start by comparing it to criteria that have already been
used.

2. Modelling

2.1. Delocalized fracture model

2.1.1. Basic theory

For the purpose of further comparison this section
summarizes the main features of the delocalized frac-
ture model described in [1]. Consider one layer of
a composite (the layer is treated as a bundle of fibre
links). Due to basic model assumptions the fracture of
a composite can be reduced to a fracture of a separate
layer (the weakest layer). A composite itself is assumed
to have been destroyed when the weakest layer is
fractured. Let the initial number of unbroken fibres in
the layer be N,, and the cumulative distribution func-
tion, F(s), of the fibres’ strength in a layer is described
by the Weibull distribution

F(s) =1~ exp[ —a(s/so)’] (1

where qa, sy and b are the distribution parameters, and
s is the acting stress. It is supposed that each fibre in
the layer can be broken only once as the load applied
to the composite increases.

The total load carried by the layer, P, is related to
the stress acting in unbroken fibres by the equation

P(s) = Ns = Nys[1 — F(s)] (2)

where N'is the current number of unbroken fibres in
the layer. (Here, for simplicity, each fibre cross-section
is taken to be one unit of area.)

With the increase of the acting stress, the number of
undamaged fibres decreases; therefore, P as a function
of s multiplied by N has a maximum. The stress, s, at
which this maximum is reached can be evaluated from

the equation
dP(s)/ds =0 at s=s, (3)

The value s, is usually taken as the most probable
failure stress and Equation 3 is considered as the
fracture criterion in models of a delocalized fracture.
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Using F(s) in the form of Equation 1 one can obtain
from Equation 3

5. = So(ab) 1/ 4)

Consider the same model of a delocalized fracture
from the viewpoint of the theory of branching pro-
cesses. Let the initial model assumptions be the same,
i.e. the composite is considered as consisting of a series
of identical layers of a certain length, d, undamaged
fibres are equally stressed within a layer, and broken
fibres carry no stress within that layer where the break
1s but sustain a total load in other layers. Nevertheless,
in contrast to previous considerations, we will analyse
the processes related to fibre break in more detail.

Whenever a fibre is broken the stress equilibrium in
the layer is disturbed and then it starts recovering into
a new state of equilibrium. The recovery occurs in
several steps. After a fibre break, the load which that
fibre carried is then equally redistributed between the
other fibres in the layer. The additional overstressing
is As =s/(N —1). As a result of this overstressing,
additional fibres can be broken. The number of those
additionally broken fibres, Ny, is equal to the number
of fibres whose strength is within the range [s; s + As],
Le.

Ni(s) = No[1 = F(S)] — No[1 — F(s + As)]
= No[F(s + As) — F(s)] (5)

The rupture of Ny-fibres causes new additional over-
stressing, i.e. As; = (s + As)/(N — Ny — 1). This over-
stressing will cause new fibre breaks, of total number
N,; the breaks of N, fibres will cause new additional
overstressing and so on until some equilibrium state is
reached.

The process of successive fibre breaks described
above is a typical branching process and, therefore, we
can use the theory of branching processes for further
consideration.

From the viewpoint of branching processes,
N, fibres, broken as a result of the initial fibre break,
can be seen as the first generation of a branching
process. N, fibres, broken as the consequence of
N, fibre breaks, will constitute the second generation
of the process, etc.

For convenience, we call the process of fibre breaks
induced by another fibre break as a correlated process
of fibre breaks. This is in order to distinguish such
a process from the process of independent fibre breaks
caused by an increment of the applied load.

The total number of fibres injured due to initial
fibre break at stress s, N,(s) is

o0

Ni(s) = ), N(s) (6)
k=1
Here N(s) is the number of fibres broken in the kth
generation of a process of correlated fibre breaks.
Note that N(s) are random numbers, characterized by
their average and dispersion.

One can see that if N (s) is finite, that means that the
process of correlated fibre breaks will eventually be-
come extinct. The extinction, in turn, means that
a new state of equilibrium is reached in the layer at



applied stress s. At the same time, whenever N (s) goes
to infinity, this means that all fibres in the layer will be
eventually destroyed at that stress, s, due to a corre-
lated process of fibre breaks. This destruction means
that macrofracture of the material has occurred, and,
therefore, the condition N, (s) — o0 can be considered
as a condition for determining a composite fracture
stress, and the described branching process can be
employed for formulating the fracture criterion.

Compare the critical stress determined by the pro-
cess of correlated fibre breaks with the critical stress
determined by Rosen’s model of delocalized fracture.
In the general case, calculating N,(s) and the critical
stress following from the condition N (s) — oo requires
quite elaborate mathematical calculation, but for the
purpose of quick evaluation, we can obtain an approx-
imate solution, which tends to be precise, in a limiting
case.

Now we will make an assumption, which simplifies
things, in order to obtain the analytical expressions for
the fracture criterion. (Later on we will consider how
essential the influence of the assumption is on the final
result.) Because in the case of extinction N € N, we
can take As = As; = As, = --- = Asy. In this case the
branching process can be considered as a regular
Markov chain. In the case when As, 1s different, a con-
sideration similar to the following can be conducted
for each value of As.

For the regular Markov chain, the extinction was
shown to be certain if, and only if, the mean number of
offspring per individual did not exceed one (see for
example [5]). This means in our case that the process
of correlated fibre breaks eventually becomes extinct
if, and only if, the mean number of fibres, broken due
to one fibre break, does not exceed one. Therefore, we
can use the condition

Nilse) =1 (7

as a condition that determines the critical stress. Be-
low s, the process of correlated fibre breaks eventually
becomes extinct and a composite layer as a whole
keeps its carrying capacity. If the acting stress exceeds
5., a fibre break with a certain probability causes
an avalanche of correlated fibre breaks and, therefore,
a composite macrofracture. This probability increases
with the increase of applied stress and the number
of potential fracture sites. The fracture of a com-
posite in cases > s, is considered in more detail in the
appendix.

Use Equation 7 in order to obtain an analytical
expression for s.. Experiments show that a real com-
posite fails at a comparatively low level of fibre frac-
tures, which means that F(s) is small in comparison
with one at the fracture stress. Therefore, we can
substitute the exponent function in the Weibull dis-
tribution by two first terms of its expansion about
zero according to Taylor’s theorem. Thus we have
F(s) = a(s/sy)® and hence

Ny = Noal(s + As)* — s"1/s{ (8)

Further, we use binomial expansion for (s -+ As)",
and because As < s we delete in the expansion terms

having second and higher powers of As; thus we take
(s + As)’ = s" + bs" " DAs

Substituting this into Equation 8 we have N; =
(1/50) Noab(s/se)* ™ LAs.

N{ = ab(s,/so) =1 9)

One can see that Equation 9 for critical stress, which
follows from the branching model, coincides with
Equation 4, which is used for calculating a composite
critical stress in Rosen’s model of delocalized fracture.
However, there is a difference between the models. The
Rosen model of a delocalized fracture is based on an
evaluation of maximal carrying capacity of the fibre
bundle and for that model Equation 4 i1s considered as
precise, regardless of the size of a bundle. In the case of
the branching model considered here, Equation 9 is an
approximate solution and can be considered as precise
only in the limiting case of a bundle consisting of an
infinitely large number of fibres. This difference arises
from the non-linear effects related to microfracture
events.

2.1.2. Non-linear effects

In order to elicit the nature of non-linear effects at
microfractures, we investigate the case of a fracture of
a bundle with a finite number of fibres in more detail.
The number of broken fibres in a bundle produced by
one fibre break is given by Equation 5. Using Equa-
tion 7 we can obtain an equation determining critical
stress for a branching process of correlated fibre
breaks in a bundle of any size

F(se + As) — F(s) = 1/N, (10)

where As = 5. /[ No(sJ)].

Equation 10 is a transcendental one and can be
solved only numerically. Nevertheless, some charac-
teristic features of the solution can be deduced from
the analytical form of the equation. One can observe
that the equation incorporates the size of a bundle
as a parameter. This means that the fracture stress
of a fibre bundle depends on the size of the bundle.
This effect does not follow from classical models of
composite fracture and 1s described only on the basis
of the generalized model developed in the present
paper.

The dependence of a fracture stress of a fibre bundle
upon the bundle size arises out of the non-linear
dependence of the probability of microfractures upon
overstressing caused by other microfractures. In a case
where the number of fibres in a bundle is large enough,
we can consider all increments related to overstressing
due to one fibre break as linear functions. This means,
for instance, that if we double the size of the bundle,
the number of fibres that potentially can be broken
increases two-fold, but the overstressing due to one
fibre break decreases two-fold; also, the probability
of fibre fracture as a consequence of additional over-
stressing decreases two-fold. Therefore, the factors
compensate each other. The situation is different when
the total number of fibres in a bundle s small. In this
case, if we, for example, decrease the size of a bundle
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by 50%, the number of potential fracture sites also will
be 50% less. The overstressing per fibre in the bundle
due to one fibre break will increase two-fold but the
increment of probability of fibre fracture due to over-
stressing will be more than two-fold. This means that
the probability of additional fracture due to one fibre
break is higher for small bundles.

Mathematically, we can describe this situation in
the following way: In the case of Ny — cc we can
replace the exponent in the Weibull distribution
by the two first terms of the expansion of Weibull
distribution over s = 0 according to Taylor’s theorem,
namely

F(s + As) = F(s) + AsdF(s)/ds (11

Taking As = 1/[ Ny(1 — F(s))], and substituting Equa-
tion 11 into Equation 10 we have

Ny = NoAsdF(s)/ds = [1/(1 — F(s))]dF(s)/ds

One can see that in this case the number of fibres
broken in the first generation of a branching process
does not depend on the size of the bundle. However,
if we take into account the higher terms of Taylor’s
expansion, we obtain

F(s + As) = F(s) + AsdF(s)/ds
+ 1/2 As? d?F(s)/ds?
and therefore
Ny = [1AL — F(s))] dF(s)/ds
+ 1/[No(1 — F(s))]*d*F(s)/ds*

The presence of N, in the denominator of the second
term in the last equation shows that, in the case of
variation of the size of a small bundle, the increase of
overstressing due to one fibre break is not compen-
sated by the decrease of the number of fibres that can
be potentially broken.

One can solve Equation 10 using numerical
methods. In Fig. 1, an example of a solution obtained
by the use of MathCAD software facilities, is shown.
The critical stress for a fibre bundle, a function of a
bundle size, is calculated for cases of wide (parameter
b in the Weibull distribution is equal to 4.6) and
narrow (b = 11) distributions of fibre strength. (The
other parameters used in Weibull distribution were
S = 4320 MPa, a = 0.25 in both cases.) The critical
stress of the bundle is given in units of the critical
stress calculated according to Rosen’s model from
Equation 4. One can see from curves 1 and 2 in Fig. 1
that the critical stress of a bundle consisting of a finite
number of fibres is lower than the critical stress of an
infinitely large bundle and increases asymptotically
with the increase of number of fibres to the maximal
value. Also, one can see from Fig. 1 that the decrease
in strength with the decrease of the number of ele-
ments in the bundle is higher for bundles consisting of
more homogeneous elements.

The dependence of composite strength upon the
number of structural units constituting the composite
is important for the composites with internal substruc-
ture, nanocomposites and multilayers of thin films.
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Figure I The dependence of the critical stress of a composite upon
the number of fibres in the composite cross-section (in units of
critical stress of a composite with an infinitcly large cross-section).
Variation of fibre strength was described by a Weibull distribution
with parameter b = 4.6 (curve 1) and b = 11 (curve 2).

2.2. Model of localized fracture

Models of localized fracture are based on the sugges-
tion that, after a break of a fibre, only fibres close to
the broken one experience overstressing. Local over-
stressing is evaluated on the basis of one or another
model of stress transfer from the broken fibre to the
unbroken fibres. Then, the probability of the initiation
of groups of two, three, four, etc., fibres due to over-
stressing is evaluated. Considering these probabilities
as a function of applied stress, the probability of the
failure of the layer FF (s) is computed. The value s, at
which FF(s) reaches a certain magnitude, for instance
FF(s) = 0.5, is usually taken as the macrofracture
stress.

Consider the model of localized fracture from the
viewpoint of a branching process. According to the
basic model assumptions, whenever a fibre is broken,
n fibres adjacent to the broken one experience over-
stressing. Assume here that the overstressing, As, is the
same for all n fibres. (In the case of different As a con-
sideration similar to the following can be conducted
for each value of As.)

Using the same simplifying assumptions as in the
previous case, one can find that for the first generation
of the branching process the number of fibre breaks
initiated by the first broken fibre is

m = nlF(s + As) — F(5)] = n(a/so)ls/50)"” VAs
(12)

Taking, as it is usually supposed for local overstress-
ing, As = (p — 1}s, where p is the coefficient of local



overstressing, we obtain
ny = n(p — 1)ab(s/so)’ (13)

where p, can be called the effective coefficient of local
overstressing. Also, as in the previous case, the condi-
tion in Equation 7 can be used to obtain the critical
stress. Therefore, from the condition n; = 1 we have

so = [n(p — DI Pso(ab) =11 (14)

One can see that with the exception of the coefficients
characterizing the local overstressing (n, p), the other
terms in Equation 14 coincide with Equation 9 deter-
mining the critical stress for a delocalized fracture in
alinear case. In a non-linear case a numerical solution
of Equation 10 should be determined.

From the viewpoint of the branching process, the
location of overstressed fibres is not important. They
can be adjacent to a broken fibre or distant from the
fracture site; therefore one can refer to Fig. 1 in order
to understand the qualitative behavior of the possible
non-linear solutions, also, in the case of localized
fracture. In the last case instead of the total number of
fibres in the composite cross-section, N, the number
of overstressed fibres surrounding the broken fibre, n,
should be used.

One can see from Equation 14 that the effect of
overstressing on the composite strength in a linear
approximation is proportional to the overstressing
coefficient in — 1/b power. This means that in linear
approximation the overstressing effect is essential only
for composites fabricated from fibres having a large
variation of properties, characterized by small
b(b~3,..,4). In the case of homogeneous fibres,
(b ~6, ..., 12 or more), the local overstressing in a lin-
ear approximation has very little influence on the
composite strength. This result is in compliance with
experimental data given in [6, 7]. In [6] it was shown
that in Kevlar-epoxy composites (b = 10.2 for Kevlar
fibres) the fracture of a fibre does not cause failure of
adjacent fibres, the fibre breaks occur in a delocalized
way and “the failed samples have a brush-like appear-
ance”. In [7] composites based on high perormance
polyethylene (HP-PE) fibres (b = 8.5) were studied. It
was shown that “in untreated HP-PE epoxy com-
posites fibres failed independently from each other
and did not interact™.

The situation is different if we consider the same
process from the viewpoint of non-linear theory. The
fracture stress decrement due to the non-linear effect
is more essential for fibres with a small variation of
strength (see Fig. 1).

The transition from the localized fracture mode to
the delocalized fracture mode can be achieved due to
control over the composite structure (properties of the
interface) provided by modern technologies for ad-
vanced composites fabrication.

3. Discussion

We discuss how essential is the influence of model
assumptions upon the obtained results. Actually, we
made one simplifying assumption: we supposed that

the overstressing will be the same for all generations
of a branching process. Due to this assumption, the
chain process can be considered as a regular Markov
chain. In reality, the overstressing increases from one
generation to the next. In the case where As is different
for the different generations of the branching process,
one can imagine a situation where the branching pro-
cess 1s substantial in the first generation, and becomes
overcritical in the second or higher generations. In
most cases, the exact solutions for varying As can be
obtained only numerically, and throughout investiga-
tion of these cases, it is a subject of separate research.
Nevertheless, here we can roughly evaluate the quali-
tative difference between the solution for the branch-
ing process in the cases where (i) As is constant and
(1) As increases from generation to generation.

For the Markov process with constant increments,
s, 1s to be considered as a threshold value: at stresses
below s, fracture does not occur, at values higher than
s. fracture happens with a probability that tends to
one with increasing stress and the number of potential
microfracture sites (see the appendix).

In the case of As increasing from generation to
generation, with a certain probability the macrofrac-
ture may start at a stress lower than the value s,
determined by Equation 10. Therefore, s, should be
considered as an average value of strength with prob-
able variations to smaller as well as higher values. The
dispersion of the strength of samples should be deter-
mined numerically for every particular model of stress
redistribution. One can also expect that in most cases,
the difference between the exact numerical solution
and approximate analytical solution obtained here
will be small. The suggestion follows from the fact that
transition from the subcritical branching process to
the overcritical one can only happen within a small
range over the threshold value of the stress. The last
conclusion follows from two characteristic features of
the branching process considered.

1. An increment of acting stress, Asy,q, at
transition from the kth generation of the branching
process to the k + 1 generation is small in comparison
with both the acting stress and the critical stress
(As =s/N).

2. For the subcritical branching process (Ny < 1)
the probability of the process surviving in the rth
generation (r = 1,2, ... ) decreases exponentially with
increasing r (see [3]).

Therefore, the probability of a deviation from the
fracture stress calculated according to Equation 10
decreases exponentially with the magnitude of the
deviation. Besides, in the last case the difference be-
tween the critical stress calculated from Equation 10
and the actual critical stress can be rAs. Taking into
account that As = s/N one can obtain rAs = rs/N <s
in almost every practically important case.

This also is in compliance with the fact that for the
delocalized fracture the approximation of a branching
process by a branching process with constant over-
stressing gives the critical stress that coincides with the
precise solution obtained earlier by Rosen for a com-
posite with an infinitely large cross-section.
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4. Conclusions

In the present paper we introduce a new criterion for
the fracture of composite materials reinforced with
continuous fibres. This criterion can be generalized for
the case of fracture of a composite with any structure,
provided the fracture occurs due to overstressing of
the elements of the composite at microfractures. It can
be especially important for advanced materials, such
as ceramics, nanocomposites and multilayers. In our
consideration we started from the apparent difference
between the two groups of models traditionally used
for describing fracture of fibre composites, namely the
models of localized and delocalized fracture. Then we
showed that models of both groups can be mathe-
matically described on the basis of the same branching
process.

The use of a generalized model allowed us to obtain
a fracture criterion common to models of localized
and delocalized fracture. This result became possible
because the mathematical formulae describing the
branching processes did not depend upon the mutual
location of fibres, the difference between the cases of
localized and delocalized fracture being only in the
level of overstressing and the number of fibres experi-
encing that overstressing. Because the basic principles
govering branching processes are the same for any
model, the functional form of the final expression
evaluating the critical stress is also the same. The
difference is in the numerical coefficients that depend
on the simplifying assumptions used for calculation
of the number of overstressed fibres and the level of
overstressing.

The use of a fracture criterion, which follows from
the theory of branching processes, allows us to obtain
a new result that previously has not been considered
theoretically. This result consists of the dependence of
the critical stress of a composite upon the size of the
cross-section of the composite. This dependence, as
was shown, can be explained as a non-linear effect.
This effect arises as a consequence of a non-linear
increase of fibre break probability due to overstressing
caused by other microfractures. This result is essential
for evaluation of the strength of real construction
elements, which in many cases are reinforced with
a limited number of fibres (or fibre layers) due to size
or weight requirements. The non-linear effect, also, is
essential for modelling the mechanical properties of
structured composites. In this case structural units of
the composite consist of a finite number of elements
and non-linear theory should be used for the predic-
tion of the strength of the structural elements and,
therefore, of the entire composite.

Appendix

In the case where the mean number of fibre breaks
caused by overstressing due to another fibre break
is more than one, the probability of an extinction
of the branching process of correlated fibre breaks
is determined as the smallest positive root of the
equation

fla)=z
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Figure A1 Probability of extinction of the process of correlated fibre
breaks as a function of acting stress (in units of critical stress for an
infinitely large composite sample). Variation of fibre strength was
described by the Weibull distribution with parameter b = 4.6 (curve
1) and b =11 (curve 2).

where f(z) is the probability generating function

fl@) = ;szk
where py, in its turn, is the probability that the fibre
fracture causes k new fibre breaks.
In the considered model, fibre breaks in the ith
generation are independent from each other; therefore
the binomial distribution can be used for p;

N!

= (N — G"(s)[1 — G ™"

Dk
where G = [F(s + As) — F(s)]/[1 — F(s)], As = s/N.
It has been shown [5] that in this case the probabil-
ity generating function is

f(2)=[1-G(s) + zG(s)]]"

and, therefore, the probability of extinction, z, in this
case is determined by the equation

[1-GE1 —z)]¥ =z

In Fig. Al the numerical calculations for probability
of extinction as a function of acting stress are shown.
The cross-section of the composite was assumed to
consist of 15 fibres, and the fibres’ strength variation
was described by the Weibull distribution with para-
meters b =4.6 (curve 1) and b =11 (curve 2),
so = 4320 MPa, a = 0.25.

One can see from Fig. Al that the probability for
the composite to survive falls rapidly at stresses above
the critical stress.
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